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Abstract— A computer-based method for colorizing grayscale images using deep learning techniques. The approach involves 

converting grayscale images into the LAB color space and employing an encoder decoder architecture within a neural network, 

specifically utilizing Convolutional Neural Networks. By harnessing the power of deep learning, the model learns the mapping between 

grayscale and colorized images, enabling effective colorization. The process involves training the model on a dataset of grayscale images 

paired with their corresponding color versions. The trained model demonstrates the capability to accurately colorize grayscale images, 

presenting a viable solution for automating the colorization process. The implementation showcases the potential of machine learning in 

image processing tasks, particularly in enhancing visual content and preserving historical or monochrome imagery. 

 

Index Terms— Encoder – an architecture that compresses the information to a very small dimensional space 

Grayscale -the image pixel values varies from 0(white) to 255(black) 

Decoder – an architecture that generates back from the compressed information through decompression 

LAB – lightness, redness-greenness, blueness-yellowness. 

 

I. INTRODUCTION 

Image colorization is pivotal for historical restoration, 

aiding fields like archaeology and enhancing accessibility. 

Transitioning grayscale to color enriches context and 

comprehension. Machine learning techniques like 

Variational Autoencoders (VAEs), Generative Adversarial 

Networks (GANs), and Adversarial Autoencoders (AAEs) 

drive this transformation. VAEs establish structured 

representations for controlled color generation, while GANs 

and AAEs use adversarial training for realistic outputs. 

Attaining accurate and visually appealing colorizations 

demands adept data preprocessing, model tuning, and 

evaluation with expansive datasets. This project aims to craft 

an algorithm adept at infusing grayscale images with colors 

effectively, merging technical prowess with aesthetic finesse 

for compelling and authentic outcomes. Autoencoders 

compress and reconstruct images but lack latent space 

constraints, limiting their effectiveness in tasks like coloring. 

Variational Autoencoders enforce structured representations 

with probabilistic distributions, while Generative Adversarial 

Networks generate realistic colorizations, and Adversarial 

Autoencoders blend VAEs and GANs for more realistic 

image colorization. Autoencoders are pivotal in image 

coloring within machine learning due to their unique ability 

to extract intricate details and learn complex relationships 

from grayscale images. These neural networks compress 

grayscale information into a latent space, capturing essential 

features crucial for accurate colorization. Their capacity to 

expand this information into higher-dimensional spaces 

facilitates the addition of color details. Moreover, 

autoencoders, through unsupervised learning, can glean 

patterns and nuances from vast amounts of unlabeled data, 

making them adaptable and efficient for generating vivid 

colorizations. Their prowess lies in understanding the subtle 

correlations between grayscale and color data, enabling them 

to produce realistic and visually appealing colorized outputs 

from grayscale inputs. 

II. RELATED WORK 

A. Colorization Method Based on Local Color  

The method proposed by Levin et al. for image 

colorization relies on the principle that neighboring pixels 

with similar intensities should have similar colors, which is 

formalized through a quadratic cost function. This approach 

addresses the challenge of efficiently assigning colors to 

grayscale images by formulating an optimization problem 

that can be solved using standard techniques. Yatziv et al. 

further enhanced this method by introducing interactive 

colorization, allowing users to provide a reduced set of 

chrominance scribbles to guide the colorization process. This 

iterative approach enables users to quickly achieve desired 

colorized results while minimizing manual effort. 

Additionally, Sangkloy et al. contributed to the advancement 

of image colorization with their deep adversarial image 

synthesis architecture, facilitating sketch-based image 

synthesis and providing users with control over color 

preferences. These methods represent significant strides in 

image colorization, offering effective solutions for various 

applications in digital image processing and computer vision. 

B. Color Transfer Method 

Image colorization techniques leveraging color transfer 

from reference images have been a subject of extensive 

research, aiming to provide effective solutions for enhancing 

grayscale imagery across various domains. Reinhard et al. 

proposed a statistical approach, identifying similar pixels 

between a reference and a grayscale image to transfer color 

characteristics efficiently. However, this method's 

effectiveness is contingent upon the availability of suitable 
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reference images and may struggle with complex textures or 

scenes lacking clear distinctions in brightness and texture. 

Welsh et al. expanded on this concept by introducing a more 

general colorization technique, although its applicability 

hinges on the presence of distinguishable texture and 

brightness levels in the target image. These methods 

represent early attempts to automate the colorization process 

but face challenges such as color bleeding across object 

boundaries, limiting their suitability for diverse image types. 

To address these limitations, subsequent approaches have 

focused on refining color transfer mechanisms. Xiang et al. 

introduced improvements by employing Gaussian Mixture 

Models to capture regional color distributions, enabling 

automatic selection of reference colors tailored to specific 

regions within the target image. Similarly, Irony et al. 

proposed a method based on color transfer from segmented 

example images, aiming to enhance colorization accuracy by 

leveraging segmentation information. Chia et al. took a 

different approach by harnessing internet image content and 

feature matching techniques to map colors from reference 

images to target grayscale images. Despite these 

advancements, challenges persist in achieving natural- 

looking colorization results, particularly in scenarios where 

the input and reference images lack congruence in content or 

texture. Addressing these challenges remains a focal point for 

ongoing research in image colorization methodologies. 

C. Fully Automatic Colorization 

With the rise of deep learning methodologies, there has 

been a surge in interest among researchers towards machine 

learning and deep learning techniques for image colorization. 

One notable advancement is the development of fully 

automatic colorization methods that operate without the need 

for reference images. Rizzi et al. introduced the Automatic 

Color Equalization algorithm, which leverages unsupervised 

enhancement techniques to achieve simultaneous global and 

local effects on digital images. Morimoto et al. proposed an 

automatic coloring method that utilizes scene structure 

information to retrieve images from a library and transfer 

colors, enabling the generation of diverse color images. 

Similarly, Cohen- Or et al. 

presented a method focused on enhancing color harmony 

while preserving the original color fidelity. Bychkovsky et al. 

contributed by creating a high- quality reference dataset to 

train models for automatic tone adjustment in the luminance 

channel. Additionally, Yan et al. explored the application of 

deep neural networks (DNNs) in photo editing, particularly 

emphasizing style color and tone adjustments to enhance 

visual impressions. However, challenges may arise when 

such algorithms are applied in real-time neural network 

contexts due to potential distortions in image color caused by 

large-scale training data replacement. Larsson et al. 

addressed this by training models to predict per-pixel color 

histograms, considering scene elements' natural appearance 

according to multimodal color distributions. Qin et al. further 

extended this by proposing an image colorization method 

based on deep residual neural networks, combining image 

classification information and features to form a non- linear 

mapping from grayscale to colorful images through deep 

networks. These advancements mark 

significant progress in fully automatic colorization 

techniques, paving the way for more efficient and accurate 

image enhancement processes. 

III. PROPOSED SYSTEM ` 

In this paper we introduce image colorization with 

architecture that integrates a Variational Autoencoder (VAE) 

to introduce a dynamic latent space, overcoming the 

limitations of fixed spaces. Challenges arise during training 

due to metamerism, but the system's three 

components—encoder, re- parameterization, and 

decoder—enable compression of input RGB samples, 

transformation into a continuous latent space, and generation 

of diverse Multi-Spectral Imaging (MSI) distributions, 

respectively, enhancing flexibility and adaptability. 

A. Dataset 

The dataset comprises 14,000 diverse landscape images 

containing various objects. These images offer a broad range 

of scenes, capturing natural landscapes with a variety of 

objects, such as trees, mountains, rivers, and buildings. The 

diversity within the dataset ensures a rich representation of 

different environmental settings, allowing for comprehensive 

training and evaluation of models aimed at landscape image 

processing tasks. 

B. Methodology 

The propose a specialized Generative Adversarial 

Network (GAN), a notable departure from conventional 

GAN architectures. Our innovation involved substituting the 

Autoencoder (AE) with a Variational Autoencoder (VAE). 

Unlike an AE with a fixed latent space, where parameters 

remain constant post-training, our VAE introduces a dynamic 

latent space. However, this dynamism presented challenges 

during training due to metamerism—a phenomenon where 

different labels with the same input cause gradients to diverge, 

complicating convergence. Learning the precise mapping 

between input and output became intricate due to the variance 

induced by this dynamic neural network. The proposed 

approach, illustrated in Figure 4.1, comprises three primary 

components: an encoder, re-parameterization, and a decoder. 

The encoder, denoted as qφ(z|rgb), compresses an input RGB 

sample into a hidden 

representation—µ (mean) and σ (standard deviation) 

vectors— using a neural network. These vectors facilitate the 

re-parameterization of the latent space vector 'z' via Equation 
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(1), where 'E' is sampled from the normal distribution N(0, I). 

The decoder is another neural network that generates possible 

MSI distributions ‘‘MSI1, MSI2, . . . , MSIn ’’System 

Architecture with variable values of ‘E’, and θ denotes the 

weights and biases. We denote the decoder with pθ (msi|z). 

Z= µ + σ E 

E ∼ N(0, 1) (1) 

Equation (1) highlights that the variations in the latent 

space vector 'z' stem from sampling the normal distribution, 

imparting a continuous variation within the VAE's latent 

space compared to the fixed space in an AE. Each input 

undergoes tagging with a unique random Gaussian noise 

number label, resulting in the re-parameterization into a 

distinctive latent vector. Consequently, one latent vector 

corresponds to a specific output, enabling the decoder 

(pθ(msi|z))— another neural network—to generate various 

possible MSI (Multi-Spectral Imaging) distributions with the 

different 'n' variations. This strategy ensures that the latent 

space accommodates infinite possibilities, guaranteeing 

multiple outputs for each latent vector and ultimately 

facilitating the disentanglement of the latent space. The 

proposed system consists of 3 parts - (i)Encoder, (ii) 

re-parametrization and (iii) decoder. 

(i) Encoder- The encoder component plays a pivotal role as 

a neural network responsible for compressing an input 

image sample into a complex vector representation. 

This representation, formed through intricate layers and 

connections within the neural network, captures the 

essential features and details of the input image. 

Through convolutional and pooling layers, the encoder 

learns to extract hierarchical features, progressively 

transforming the image into a condensed latent 

representation. This latent representation, comprised of 

mean and standard deviation vectors, encapsulates the 

essential information necessary for subsequent 

processing. Its complexity lies in its ability to distill the 

diverse and intricate features of the input image into a 

condensed format that retains essential information for 

downstream operations. 

(ii) Re-parameterization-Following the encoding process, 

reparameterization involves a crucial transformation 

step that converts the generated mean and standard 

deviation vectors into an actual latent space vector. This 

transformation enables the introduction of variability 

and continuous representations within the latent space. 

By employing a sampling technique from the normal 

distribution, typically denoted as N(0, I), the 

reparameterization step generates a latent space vector. 

This process introduces stochasticity, ensuring that each 

input image is associated with a unique latent 

representation. Through this stochastic process, the 

latent space gains diverse and continuous variations, 

allowing for the generation of multiple outputs 

corresponding to a single input, thereby enriching the 

model's flexibility and adaptability. 

(iii) Decoder- The decoder, another neural network 

component, acts as the counterpart to the encoder and 

plays a crucial role in the generation of possible Multi- 

Spectral Imaging (MSI) distributions. Given the re- 

parameterized latent space vector as input, the decoder 

network deciphers and processes this information to 

produce varied MSI distributions. Leveraging the 

weighted connections and learned patterns, the decoder 

generates multiple potential outputs, each with 'n' varied 

values. These distributions represent the model's 

predictions or reconstructions based on the unique latent 

representations obtained from the reparameterization 

step. The complexity of the decoder lies in its ability to 

transform the condensed latent space information into 

meaningful and diverse MSI distributions, providing 

multiple plausible outputs for a single input image. 

 

Ryzen 5 3550H with Radeon Vega Mobile Gfx with 

frames per second 2.10 GHz and testing was performed on 

another laptop with Configuration 8GB RAM and 512 GB 

HDD 
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IV. FIGURES AND TABLES 

 

The above table shows the cases when the proposed system 

will perform with a high accuracy and also the cases where 

the system does not perform with that high accuracy. 

V. CONCLUSION 

In summary, a Variational Autoencoder (VAE) refines the 

standard AE by incorporating advanced features for 

improved performance in specific tasks. By enhancing 

architectures and introducing task- specific adjustments, it 

aims to capture complex patterns in data. The core process 

involves encoding, reparameterising for variability, and 

decoding for reconstruction. Applications include image 

denoising, anomaly detection, and colorization, showcasing 

its ability to create a compact and informative latent space 

representation for diverse tasks. 

VI. EXPERIMENTAL RESULTS 

In this section we’ll be disussing the results, this was 

implemented on a computer with configuration AMD 
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